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SUMMARY 
The buoyancy-driven instability of a monocomponent or binary fluid that is completely contained in 
a vertical circular cylinder is investigated, including the influence of the Soret effect for the binary mixture. 
The Boussinesq approximation is used, and weakly-non-linear solutions are generated via Galerkin’s 
technique using an expansion in the eigensolutions of the associated linear stability problem. Various types 
of fluid mixtures and cylindrical domains are considered. Flow structure and associated heat transfer are 
computed and experimental observations are cited when possible. 
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INTRODUCTION 

In Reference 1, hereafter referred to as Part I, the stability of a binary mixture in a vertical 
cylinder heated from beneath in the presence of a gravitational field was reviewed, formulated 
mathematically and its stationary stability extensively studied via a linear stability analysis. 
While such a study leads to useful predictions for the onset of convection, it cannot yield 
a quantitative characterization of the finite-amplitude flow and concomitant transport observed 
experimentally. A weakly non-linear analysis is presented to predict the behaviour of the system 
under slightly supercritical conditions. Of special interest is the spatial structure and stability of 
time-independent flows near onset. 

MATHEMATICAL DESCRIPTION 

The system to be studied consists of a layer of non-reactive fluid that completely fills a vertical, 
circular cylindrical container heated from beneath, as illustrated in Figure 1. Making use of the 
Boussinesq approximation and the scaling factors introduced in Part I leads to  the following 
non-dimensional equations, detailed in Part I, for determining the dimensionless velocity (u), 
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L 

Figure 1. Cylindrical domain 

pressure (p), temperature (T) and ‘concentration’ (q): 

aU 
- + u - Vu = - Vp + (T- +q)eZ + V2u, 
at 

= V2T+ cV2q + &(e,. u), 

(1) 

(2) 

5~ - + u . V ~  =V2T+V2q, (2 ) (3) 

v * u = o ,  (4) 

where Ka, pr  and $c are the Rayleigh, Prandtl and Schmidt numbers, respectively, modified for 
a binary mixture, + and are parameters related to the Soret and Dufour effects, and e, is the 
vertical unit vector. [Recall that (u, T, q, p) represents a perturbation from a state of pure 
conduction and diffusion.] The appropriate boundary conditions are 

u=O, n-VT=O, n-Vq=O, on r = l ,  -*<z<+, ( 5 )  

u=o,  T=O, n.Vq=O, on O < r < l ,  z =  4-4. (6) 

Although in Part I the stability of cylinders with either a conducting or an insulating sidewall 
were both analysed, we now arbitrarily limit our focus to the insulating case. The extension to the 
conducting case is straightforward. 

Note that q is a composite variable defined by 

where W, is the (unscaled) local mass fraction of component 1 (which is usually taken to be the 
denser species), TD is the dimensional temperature, El and E2 are the bulk mass fractions of the 
two components in the cylinder ( g1 + ~2 = 1) and D‘ and D are the Soret and ordinary diffusion 
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coefficients, respectively. q was introduced in P2rt I to decouple the boundary conditions: the 
zero-mass-flux boundary condition Dn V Wl + W, E2 D’n V T =  0 on all walls becomes n - Vr] = 0. 
Although the Dufour heat-flux term does not appear explicitly in the boundary conditions at the 
sidewall, an insulating sidewall is usually also assured because the combination of n - VT=O and 
n . Vr] = 0, in all but special cases, ensures that n - V Wl = 0, which eliminates the Dufour heat flux. 
However, the introduction of r]  is still useful because of the thermally conducting top and bottom. 

While the cases studied here are limited to (=O, i.e. neglecting the Dufour effect, the Dufour 
term is included since the solution technique is applicable for 5 # 0. An approximate solution to 
this problem is found using a modified version of the weakly non-linear theory developed by 
Eckhaus.’ Each solution (u, T, r ] )  to the non-linear problem is approximated by a truncated series 
of eigenfunctions (U, 0, r) of the linear stability problem, augmented by a truncated series of 
eigenfunctions (0, 0, r) of the linearized horizontally averaged problem as follows: 

(See Reference 3 for details on the horizontally averaged problem, its adjoint problem and their 
solutions.) Each (U, 0, IJnl represents a modal solution to the linear stability problem as 
generated in Part I with boundary conditions ( 5 )  and (6)  and [=O. [The pressure, p ,  does not 
explicitly appear here because the velocity-field representation is solenoidal. If desired, p may be 
computed once the (u, T, q)  vector is known.] The value of n determines the azimuthal depend- 
ence of the modal solution, while the value of I determines its vertical symmetry (see Part I). Each 
(0, a, f)jlt represents an eigenvector of the linearized, horizontally averaged transport equations 
for 5 = 0; these terms are necessary in order to obtain a physically reasonable non-linear 
approximation. The weakly-non-linear solutions must track the deformations of the horizontally 
averaged T and r]  fields corresponding to convective transport. All (U, 0, F)nl yield zero horizon- 
tal averages for T and q owing to the cos(n6) azimuthal dependence of 0 and r, or, for n =0, to 
the design of the trial functions which automatically satisfy the derivative boundary conditions at 
the sidewall. (If the sidewalls were conducting, the n=O mode would provide the sole exception, 
which would still be insufficient to track the deformations.) 

For each approximate non-linear solution there exists a corresponding set of coefficients 
(FnI ,  I f j J t ) .  These coefficients are found by weighting the error (residual) of the approximate 
solutions by the eigenvectors of the associated adjoint problem to the linear stability problem 
since the latter is non-selfadjoint. In practice, only a small number of terms that are expected to 
have the largest amplitude coefficients are retained in the series (7); the criterion for selection of 
these terms was discussed by Ro~enbla t .~  This constraint is based on practicality, but it limits the 
range in &I over which the solutions are quantitatively reliable to values near Ed. 

The problem of interest is defined in equations (1)-(6). However, expansion (7) is comprised of 
separate expansions for (u, f, f i )  and (0, T, F j ) ,  where f and f i  have zero horizontal averages, while 
T and j j  are functions of only the vertical co-ordinate (2) and time (t), such that T =  T+ and 
r]  = f i  + j j .  Consequently, problems (1)-(6) are recast explicitly in terms of f, T, 4 and F j ,  rather than 
T and v. Specifically, solutions (u, f, T, 4, i j )  are sought to the equations 

au 
at 
-+u. V U =  -vp+ [?+ T-  ~ , ~ j + t . r ) l e , + ~ ~ u ,  
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Here the overline denotes a horizontally averaged quantity. The corresponding boundary 
conditions are 

U=O, ~ . v F = o ,  n.Vfi=O on r = l ,  -&<z<f, (14) 

u=o, F=o, n-Vtj=O on O , < r < l ,  z =  -i-+, (15) 

(16) 
- aq 

aZ  
T=O, - = O  ~ = + f .  

Each of the field variables u, f and rj corresponds to a field variable from the linear stability 
problem U, 0 or r, respectively, which in turn each correspond to a field variable from the linear 
adjoint stability problem U*, @* or r*, respectively. (See Reference 3 for details on the linear 
adjoint system and its solutions. This problem was solved in the same fashion as the original 
linear stability problem.) In analogy with the Galerkin technique applied in Part I to the linear 
stability problem, an Lz inner product (denoted by (,)) is used to define the projection, and the 
same notation is used. However, in contrast to Part I, the adjoint eigenvectors U*, @*, r*, @* 
and f *  are utilized in the projection of the residual functions, i.e. a Petrov-Galerkin method 
employing the adjoint eigenvectors is employed. The latter leads to some simplifications in the 
formulation due to orthogonality. Applying this procedure to equations (8)-( 11) yields an 
equation for each index pair nl corresponding to a particular modal solution of the linear stability 
problem retained in expansion (7): 

where US, 03 and rzl represent the adjoint field variables corresponding to those of the modal 
solution (U, 0, TJnl. This equation gives the first type of constraint needed to determine the 
coefficients in expansion (7). Note that the pressure term has been eliminated and each velocity 
basis function is solenoidal, so that no specific representation of the pressure field is required. 

Following an analogous procedure, the second type of constraint equation resulting from 
equations (12) and (13) is: 
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where tjlt is an eigenvalue of the linearized horizontally averaged problem, and a$, and 
ri*li represent the adjoint field variables corresponding to the eigenvector (0, a, T)jlt. One such 
equation is required for each index triplet j l t  corresponding to an eigensolution of the linearized 
horizontally averaged problem retained in expansion (7). 

Substituting representation (7) for u, f, fl, T and ij into equations (17) and (18) gives the 
equations that must be solved for the coefficients ( F n l ,  Hjlr). Substituting the representations from 
expansion (7) into equation (17) yields 

Substituting representation (7) into equation (18) gives 

- sc <Tzps% [(uabcd v) r j k n Z 1 )  1 FcdFnl. (20) 

Note that the volume integration inherent in the L2 inner product over the cylindrical domain 
automatically takes care of the necessary horizontal averaging of the non-linear terms in this 
equation, and many of the linear terms will be zero as a result of orthogonality. In these 
equations, 

or 

and 

u$cnl = A$cnIojknZ} 

ujknI = AjknIOjknZ 
(2D axisymmetric, n = 0), 
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where v j k n l ,  W j k n l ,  Ojknlr  ?jknl and Ajknl are basis functions defined in Part I. In addition, 
(0, Gjlt, rjlz) and (0, @$,, rj*lZ) are the eigenvectors and adjoint eigenvectors, respectively, of the 
spatially averaged operators. The subscript 1, which was not used in Part I, denotes the even ( t  = 1) 
or odd (1 = 2) solutions since both are needed in the weakly non-linear expansion. (More details 
on the index notation are given in Part I and Reference 3.) 

The system of algebraic equations resulting from equations (19) and (20) are used to study the 
steady-state solution branches as Ru is varied for specific fluid mixtures (represented by specific 
values of $, h and s”c) at selected (radius-to-height) aspect ratios (7). Thus, a system of coupled 
non-linear algebraic equations for the set of coefficients (Fnl ,  I f j l t )  must be solved for each steady 
state sought. The integrals in equations (19) and (20) were evaluated using Gaussian quadrature 
with error control. The resulting system of algebraic equations are solved using Newton’s method 
with an exact Jacobian and branches tracked via first-order continuation. 

Since expansion (7) is composed of solutions to linear problems that are independent of Pr and 
fc,’ the set of integrals in equations (19) and (20) need not be re-evaluated as these parameters are 
varied for fixed values of y and $. This greatly improves the efficiency of this technique in studying 
the effects of these parameters. Moreover, &I can be varied in the same manner, which is 
extremely useful in terms of making this an efficient technique for tracking solution branches as 
Ru is varied via, for example, continuation schemes. 

The criterion proposed by Rosenblat4 for truncation of an eigenfunction expansion of the field 
variables in a non-linear stability problem is based on the linear stability results for the modal 
excitation energies (as expressed here in terms of the modal Rayleigh numbers and the 
possible quadratic self-interactions of the critical mode. From the linear stability results for the 
problem,’ it is seen that in the aspect ratio range Od y <4 usually either the n=O ( I =  1) or n= 1 
(1= 1) mode is the critical mode for the onset of convection, with the n=2 ( I =  1) mode playing 
a lesser role. Also, these modes generally have the three lowest energies over this range of aspect 
ratios. Consequently, in order to study the evolution of the primary solution branches (i.e. 
branches bifurcating from the conduction state) as Ru is varied near the critical value for each set 
of parameters (pr, fc, $, y), it is convenient to generate the integrals needed in equations (19) and 
(20) for the same set of eigenfunctions for each set of parameters ($, y) studied. So, for each set of 
values of ($, y) studied, the solution to the non-linear problem is expanded in terms of equation (7) 
using the same set of eigenfunctions from the linear stability problem, since this set of functions, 
along with a suitable set of mean-field eigenfunctions, is capable of representing all of the desired 
primary solution branches sufficiently close to the onset of convection. For the cases considered 
here, all of the primary branches can be represented in terms of modes selected from the same set 
of six modes, namely, the three modes specified above plus their 1 = 2 counterparts (along with an 
appropriate set of mean-field eigenfunctions). Consequently, it is always convenient to compute 
the terms in the constraint equations (19) and (20) as if the non-linear solution were to be 
expanded in terms of six modes, and then to seek solutions of the resulting algebraic system for 
which various subsets of the coefficients (Fnl ,  H j l z )  are taken to be zero, corresponding to different 
branches. In addition, it is expected that for solutions near the critical Rayleigh number on any 
branch, the amplitude coefficients H j l t  in the representation of the mean fields T and ij will 
decrease in magnitude for increasing j (i.e. higher harmonics). This expectation is based on the 
physical reasoning that thin conduction boundary layers will not form at the top and bottom of 
the container until the flow is much more vigorous than it is anticipated to be in the Rayleigh 
number range of interest. These considerations lead to the following form of expansion (7): 
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where J is varied depending on the number of terms required to achieve the desired convergence. 
In general, J must be increased as l?a is increased, Using expansion (25) provides a significant 
advantage over strictly following the truncation criterion espoused4 and by Rosenblat 
and co-workers. Rather than having the form of each solution completely determined by an 
a priori selection of a minimal set of modes in expansion (7), the use of a slightly larger, though 
nonetheless judiciously chosen, set of modes allows for a greater possible number of solutions. 
While the forms of primary branches can be aptly determined by Rosenblat’s criterion, a good set 
of modes for the representation of secondary branches (i.e. those that bifurcate from primary 
branches) would be much more difficult to select. Consequently, the approach used here appears 
more likely to suggest potential secondary bifurcations. Furthermore, it is hoped that by 
including more modes it might be possible to extend the analysis to higher Rayleigh numbers 
than would otherwise be possible. Nonetheless, the choice of the six modes used in expansion (7) 
is based on Rosenblat’s criterion. 

In the presentation of the results, the steady-state solution branches are represented by graphs 
of the horizontally averaged Nusselt number ( N u )  as a function of R”a. For the case of an 
insulating sidewall, the horizontally averaged heat transfer is independent of z at steady state. For 
clarity, the dimensionless temperature field is rescaled, with the linear field added back in, so that 
the Nusselt number has a value of unity for a state of pure conduction. The rescaling is as follows: 

(26) 

which can be rewritten in terms of dimensional temperatures, denoted here by a superscript D for 
clarity as 

( T D  - rD) TR= 
( T i -  T:)’ 

where T”D$(TZ+ TF), with T: and TZ being the temperatures at the top and bottom of the 
cylinder, respectively. Consequently, the Nusselt number can be interpreted as the degree of 
convective enhancement to the heat transfer. The horizontally averaged Nusselt number then has 
the following simple form in terms of the rescaled dimensionless temperature: 

where still represents the deviation from the linear, conduction profile. Thus defined, the 
Nusselt number will always be positive (Nu  2 l), regardless of whether heating is from the top or 
bottom, and the sign of the Nusselt number will not be used to specify the direction of heat 
transfer. There are primarily two reasons to use graphs of Nusselt number as a function of 
Rayleigh number for representation of the solution branches: first, this is the most common 
means of presenting results of experimental studies of incipient convection; second, it is a univer- 
sal approach in that it can be used as a means of characterizing any thermoconvective flow state, 
regardless of the spatial variation of the flow field. 

An extremely important characteristic of the steady-state convective solutions is their stability. 
This must be established in order to predict whether or not a given flow state will be observable in 
a real physical system. Fortunately, this is easily accomplished here by analysing the system of 
first order, non-linear differential equations represented by equations (19) and (20). For conveni- 
ence, this system of equations is represented as follows: 

aA M-=F(A), 
at 
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where the matrix M results from the integrals multiplying the time-derivative terms, and A is 
a vector whose elements are the set of amplitude coefficients (Fnl ,  Hjli). The algebraic problem for 
the steady-state solutions of equations (19) and (20) is then given by 

F (A’) = 0, (30) 
where the vector As represents a particular set of values of the coefficients A corresponding to 
a particular steady state. The stability of a steady-state solution As is then found using linear 
stability theory, i.e. the solution is first written in the form 

A =As -+ Adex‘, (31) 
where Adex‘ represents a disturbance to the steady state A”, and then linearized about the 
steady-state solution As to yield 

xMAd = JAd, (32) 
where J =  (BF/BA),, is the Jacobian associated with the solution of equation (30) via Newton’s 
method. This problem is a generalized eigenvalue problem for x. If any of the eigenvalues has 
a positive real part, the disturbance with the spatial form determined from the corresponding 
eigenvector Ad will grow exponentially in time, so the solution A’ is unstable. In this analysis the 
non-linear solutions are approximated by expansion (25), which is a truncation of expansion (7). 
Consequently, the stability of each steady-state solution As is only assessed with respect to 
a limited class of disturbances. Although stability is presumed if all of the eigenvalues of equation 
(32) are negative, it cannot be guaranteed. 

DISCUSSION 

The parameter space associated with the mathematical characterization of the problem is 
(y, xu,  l%, s“, #, c). Clearly, it would be very difficult and time consuming to conduct a thorough 
investigation of the roles of each of these parameters over their entire range. Consequently, 
certain limitations are imposed to reduce the scope of this study. As previously discussed, the 
parameter 5 is neglected entirely, with the justification that it is expected to play a minor role. The 
Rayleigh number range of interest is that near the onset of convection. Monocomponent fluids 
are an important subclass of binary systems in several respects: they are a limiting case as I + I +O, 
and separate the physically disparate cases of fluid systems for which + < O  or + > O .  Since 
monocomponent systems have not been thoroughly characterized previously, it is felt that an 
appropriate starting point for this analysis is to undertake this task. Consequently, monocompo- 
nent systems are used as the primary vehicle for studying the effect of varying the cylinder aspect 
ratio, y. At the same time, to gain some insight into the effect of varying the Prandtl number, 
monocomponent systems corresponding to two Prandtl numbers are considered: Pi-= 6.7, corres- 
ponding to water, which is somewhat intermediary between the ‘typical’ values for gases and 
liquids (approximately 1 and 100, respectively), and Pr=0.02, which is a characteristic value for 
liquid metals. The numerical solutions for these Prandtl numbers are compared with the 
experimental results of Muller et al.,’ who studied buoyancy-driven convection of water, and also 
of liquid gallium. In studying the effect of varying $, selected binary mixtures will be studied for 
which the Soret coefficient has been measured, and for which it is felt that the experimental results 
are reasonably reliable. The latter is by no means a trivial constraint. Finally, as a result of 
focusing on selected, real physical systems, an independent study of the effect of varying the 
Schmidt number is not undertaken; the Schmidt numbers that are studied are simply those 
corresponding to the binary systems for which Soret coefficients are available. 
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Monocomponent fluids 

It is well documented, both theoretically (see e.g. References 1 and 8-10) and experimentally 
(see e.g. References 7 and ll), that the onset of convection in cylinders with small aspect ratios 
occurs in the form of a single antisymmetric roll cell. Such a flow is illustrated in Figure 2 for 
Pr = 6.7, y = 1/7 and Ra = 180 300, just after the onset of convection [Henceforth, only Rayleigh 
numbers based on the height of the cylinder (L) will be used (i.e. Ra or Ka) in order to facilitate 
comparisons of results at different aspect ratios.] Computationally, the onset occurs at  180 290. 
There is no qualitative difference between this flow and the flow structure at the same Rayleigh 
number for Pr=0.02, but the amplitude of the non-dimensional velocity field is greater for the 
low Prandtl number case, as expected. (Recall that the velocity scale is v/L.  See Reference 3 for 
details.) 

For the case shown in Figure 2, the maximum velocity is located approximately in the vertical 
and horizontal midplane (i.e. at z = 0 and 8 = 0, or the antisymmetric equivalent) at  a dimension- 
less radius ( r /R ,  where R is the cylinder radius) of about 1/2. If we boldly (and without 
justification) increase the Rayleigh number to 300000, the flow structure (Figure 3) is similar to 
the experimental observations of Muller et aL7 at this Rayleigh number. The plane corresponding 
to 8 = 90" shows the initial stages of the generation of secondary recirculations; such two- 
dimensional (2D) projections must be interpreted with care since the main flow is perpendicular 
to this plane, with the speed of the projected velocities being an order of magnitude greater in the 
8 = 0 plane than in the f3 = 90" plane. This recirculation pattern is a direct consequence of the flow 
tilting in the cylinder so that it is not completely horizontal at 8= 90°, as it would be in the limit as 
Ra-Ra". At 8=90", the flow is slightly upward at  r = O  for z>O, but the main component of the 
velocity is horizontal. 

The reason for this tilting is that as the faster moving fluid at r x 1/2,8=0 approaches either the 
top or the bottom of the cylinder, the stagnation pressure forces it to turn more toward the far 
'corner' until it is forced to turn downward. While most of the fluid that flows toward the middle 
of the top is carried forward, some of it is turned sideways, resulting in the secondary flow. As the 

Figure 2. Cross section of flow near onset for y=1/7 and Pr=6.7 (lol,,,=0~056) 
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I 1 . .  . , , , . ___---, . , . 

Figure 3. Flow structure at Ra=300000 for y=1/7 with Pr=6.7 (O=W, lul,,,=6.41; 0=90", IuI,,,=O.332) 

average speed of the fluid increases with increasing Rayleigh number, more of the fluid is diverted 
into the secondary recirculations. The maximum velocity is moved toward the sidewall relative to 
the lower Rayleigh number case because the increased flow speeds result in greater shear near 
r=O.  

The bifurcation diagram for Pr=6.7 is given in Figure 4. This figure shows that the one-cell 
solution that bifurcates from Ru" = Rul = 180 290 [i.e. Rani for the n = 1 'even' ( I  = 1) mode] is 
stable. In fact, computationally this branch is stable to as high a Rayleigh number as we 
considered, well beyond where quantitative accuracy of the approximation could be claimed. 
Experimentally, this pattern was observed at Rayleigh numbers of the order of 10Ra" at this 
aspect ratio for Pr = 6.7 (Reference 7). The stable branches are so designated in the figure legend. 

The approximate solutions represented by each branch are given by expansion (25). The 
archetypical spatial structure of a solution on a given branch is determined by the particular 
subset of the coefficients ( F n I )  that are non-zero, and by their ordering in terms of magnitude, 
while the variation along a branch is determined by the changes in magnitude, both relative and 
absolute, of the coefficients in this subset. For example, the branches bifurcating from kuol, kal 
and RuZl  are composed of the following subsets of (Fnl) ,  represented in terms of the pairs (n, I ) :  

branch bifurcating from xuol  : [(0, l), (0,2)], 

branch bifurcating from Rall : [(l, l), (0,2), (2,2)], 

branch bifurcating from Ru21 : [(2, l), (0,2)]. 

The contributing modes are listed (from left to right) in order of decreasing amplitude at a slightly 
supercritical Rayleigh number. Henceforth, these branches are denoted as follows: (Oe, 00) is used 
to denote the branch bifurcating from kuOl [since its approximation includes the n=O 'even' and 
n = 0 'odd' linear stability solutions] (le, 00,20) the branch bifurcating from kul 1, and (2e, 00) the 
branch bifurcating from RuZl. For each branch, all other coefficients FnI are zero as computed. In 
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Figure 4. Bifurcation diagram for y =  1/7 with Pr=6.7 (The modes that contribute to the description of each branch are 

shown in braces.) 
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Ra 
Figure 5. Bifurcation diagram for y=1/7 with Pr=0.02 

addition, the set of non-zero coefficients used to describe the solution along each branch 
comprises a suitable set of coefficients (Hj l t ) .  A similar bifurcation diagram for Pr = 0-02 is shown 
in Figure 5. 

At an aspect ratio of y = 1/2, the critical mode for the onset of convectionis again the n = 1 even 
mode. The bifurcation diagram is shown in Figure 6. The critical Rayleigh number for the onset of 
convection is Ra' = Ral = 3774. The flow field corresponding to Pr = 6.7 at Ra = 4000 is shown in 
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1.2 

1.15 

1.1 

1.05 

1 
0 5000 10000 15000 

Ra 
Figure 6. Bifurcation diagram for y=1/2 with Pr=6.7 

Figure 7. 3D perspective of flow at Ra=4000 for y =  1/2 with Pr=6.7 (lul,,,=O.628). (Dotted lines indicate location of 
the top of cylinder) 

Figure 7. This Aow has the character of nearly a 'pure' n = 1 mode in the sense that the secondary 
recirculations are very weak. This case served as a test of the numerical approximation, in that 
some quantitative information was available from two other individuals working on the mono- 
component problem, as summarized in Table I. In this table, U? is the maximum vertical 
velocity and U? is the maximum radial velocity. The agreement between the results of this work 
and the numerical results of Bontoux'2 is quite good, especially considering that two vastly 
different approximate solution techniques were used. (Both of the other analyses employed the 
finite difference method.) The disagreement in UY is 4-3%, while that in uYx is only 1.5%. The 
maxima were found in the 8=0 plane. The agreement between these two works suggests 
a problem with that of Ne~rnann . '~  In that latter work, the velocities appear to be roughly 50% 
too large, which also explains the greater Nusselt number found compared to this study. There 
are other indications of problems with the solutions presented in Reference 13, such as bifurcation 
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Table I. Comparisons of computational results 
for a cylinder with y=1/2 and Pr=6-7 at 

Ru=4000 

N u  U? U Y X  Reference 

1.15 6.1 5.1 Neumann' 
- 4.40 3.23 Bontoux" 
1.06 4.22 3.28 This paper 

e = o  

I ....... 

. _ _ _  . . .... 

Figure 8. Flow profiles in the B = O  and B=90" planes at Ra=17500 for y=1/2 and P r = 6 7  (B=O, lul,,,=4.73; 0=90, 
lUlmsx= 1.96) 

diagrams in which the solution branches show positive second derivatives of Nu with respect to 
Ra. The problem with that work may result from the conditions imposed on nodes along the 
centreline of the cylinder (r=O). The comparisons in Table I, although limited in scope, give 
credibility to the approximate solution technique used in this work. 

Although it was speculative, we carried the calculations for the case of y = 1/2 and Pr = 6.7 up to 
Ra= 15 000, which is nearly Ra = 4  Ra". The results suggest that the (le, 00,20) branch is stable, 
while the (Oe, Oo), and (2e, 00) branches are unstable. Experimentally, Miiller et al.' found flows 
similar to the (le, 00,20) branch to be stable beyond Ra = lo5. Qualitatively, the comparisons 
between the experimental and theoretical results are fairly good, but such qualitative compari- 
sons of gross features provide a rather weak test of the accuracy of the numerical results. The 
results of N e ~ m a n n , ' ~  which are apparently in error by nearly 50% in terms of the magnitude of 
the velocity field, also compare well qualitatively with the experimental results. 

Continuing this somewhat speculative approach Figure 8 shows that the flow for Pr = 6.7 at 
Ra = 17 500 is tilted, yielding strong secondary recirculations. The secondary recirculations are 



768 G. R. HARDIN AND R. L. SANI 

already evident at Ra = 4000 for the Pr = 0.02 case, which is presented in Figure 9, because of the 
larger non-dimensional velocities characteristic of the small Pr fluids. Similar flow structure was 
observedby Miiller et al.7 The bifurcation diagram for the low Prandtl number case is shown in 
Figure 10. The numerical results suggest that the (le,Oo, 20) branch becomes unstable at 
Ra = 13 400 (which, of course, is well past where this approximation could be expected to be 
accurate) with respect to a 3D (three-dimensional) oscillatory disturbance, while the experimental 
results of Miiller et aL7 on liquid gallium ( P r x 0 0 2 )  show this branch to be stable to roughly four 
times this Rayleigh number. It seems probable that this disparity is caused by the accuracy of our 
approximation. However, interestingly, the experimental results of Miiller et al.’ show the y = 1/2 
case at Pr 25002 to be exceptional, in that they found the stationary flow regime to be stable to 
a Rayleigh number that is many more times the critical Rayleigh number for the onset of 
convection than at any other aspect ratio for which they presented data. No parallel behaviour 
was found for the onset of instability in their experiments on water. In fact, the theoretical 

Figure 9. 3D perspective of flow at Ra=4000 for y=1/2 with Pr=0.02  ((~(, , ,~~=33’0) 

1.008 

1.006 

2 1.004 

1.002 

1 

I- 
I (le,Oo,20) stable -- I ge,oo) 

I / 

- -  I (Oe,Oo) 
I f 

I / 

I f 
I / 
I 1  
I /  

I , .  
0 3000 6000 9000 12000 15000 

Ra 
Figure 10. Bifurcation diagram for y = 1 / 2  with P r = O 0 2  
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prediction of the transition to a periodic state fits nicely on a smooth curve with the experi- 
mentally determined transition points shown at all other aspect ratios. It at least suggests that the 
Pr =0-02 case at y = 1/2 should be investigated more carefully, both theoretically and experi- 
mentally. 

At an aspect ratio of y = 1, the bifurcation diagram for Pr = 6.7 becomes more interesting, as 
seen in Figure 11. The critical Rayleigh number at this aspect ratio is Ra=2260, and the critical 
flow state is axisymmetric, corresponding to the n =O even mode. A stable axisymmetric solution 
at Ra=2500 is shown in Figure 12. (Note that using the Boussinesq approximation does not 
allow the theory to distinguish between the two possible solutions corresponding to either upflow 
or downflow at the centre of the cylinder. In order to determine this, the temperature dependence 
of some physical property other than the linear density variation in the buoyancy term must be 
accounted for.) However, the axisymmetric branch becomes unstable at Ra = 2850 with respect to 
a stationary disturbance with a spatial dependence corresponding to n=2. The result is a new 
stable solution that is characterized by the following set of non-zero coefficients (Fnl) for the 

1.3 
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1.1 
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. . . . . . .I 

2400 2600 2800 3000 3200 

Ra 
Figure 11. Bifurcation diagram for y =  1 with Pr=6.7 

e = o  
Figure 12. 3D perspective of flow at Ra=2500 for y =  1 with Pr=6.7 (lulmaX=1.14) 
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Figure 13. 3D perspective of flow at Ra=4000 for y = l  with Pr=6.7 ()uIma,=2.17) 

multidimensional part of expansion (25), represented in terms of the pairs (n,  1): 

secondary branch bifurcating from (Oe, 00): [(0, l), (0,2), (2, l), (2,2)]. (33) 
Henceforth, this branch is denoted by (Oe, 00,2e, 20). A solution on this secondary branch at 

Ra=4000 is shown in Figure 13. This solution consists of two adjacent counter-rotating rolls, 
each filling half the cylinder. The numerical result that a new solution supersedes the axisymmet- 
ric solution at Ra = 2850 for y = 1 disagrees with the experimental findings of Miiller et al.,’ who 
apparently found axisymmetric flows in water at Rayleigh numbers well past Ra = lo4. However, 
using a cylinder with a transparent lid, Stork and Miiller14 observed a flow near the onset of 
convection in a silicon oil with a planform corresponding to the (Oe, 00,2e, 20) branch in 
a cylinder with y = 0.8, although its stability was questionable at that aspect ratio. Furthermore, 
the (Oe, 00,2e, 20) solution would be very hard to distinguish from an axisymmetric flow using the 
vertical light cut technique employed by Miiller et al.,’ since a vertical light cut would have to be 
made in a small range of angles in order to detect the non-axisymmetry of the (Oe, 00,2e, 20) type 
flow. Vertical light cuts at any other angles would look essentially ‘axisymmetric’. In their 
experiments no possibility existed for the visualization of horizontal light cuts since the top and 
bottom of the container were copper. In addition, it would be possible to bias the experiment 
arbitrarily toward an axisymmetric solution by imperfections introduced in order to allow for 
thermal expansion of the liquid in the apparatus, as noted by Stork and Miiller.14 This 
disagreement must be examined more carefully. 

The bifurcation diagram for Pr =002 at y =  1 is shown in Figure 14. For this low Prandtl 
number case, it is seen that the axisymmetric solution becomes unstable with respect to the 
(Oe, 00,2e, 20) solution at a very low Rayleigh number, Ra = 2430, for Pr =002. Flow solutions 
along this secondary branch look very much like that shown in Figure 13 for Pr = 6.7, except that 
slightly more inertia is evident in the lower Prandtl number flows at the same Rayleigh number. 

The next aspect ratio considered is y =  1.57485 =yD, which yields a numerical double eigen- 
value of the linear stability problem, corresponding to the crossing of the n = O  and n = 1 marginal 
stability limits shown in Figure 10 of Part I; the Rayleigh numbers Raol and Rall corresponding 
to the n = 0 even and n = 1 even modes differ in the 14th significant figure (for the number of trial 
functions used to generate the linear stability solutions that are employed in the approximate 
solution of the non-linear problem). This aspect ratio is termed yo for convenience and represents 
a co-dimension two bif~rcat ionl~ (i.e., yD is a double eigenvalue of index 1). Since these two modal 
solutions have the same Rayleigh number, linear stability theory cannot predict the spatial form 
of even the feeblest flow. The bifurcation diagram for Pr=6.7 is shown in Figure 15. Both the 
(Oe, 00) and (le, 00,20) branches bifurcate from Ra= 1914, but the axisymmetric branch is 
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Figure 14. Bifurcation diagram for y = l  with Pr=O.02 

Figure 15. Bifurcation diagram for y =  1.57485 with Pr=6.7 

unstable at the outset. These branches follow nearly identical trajectories in the N u  versus Ra 
plane. Consequently, they appear superimposed in Figure 15. The stable (le, 00,20) solution at 
Ra = 2000 is shown in Figure 16. This solution consists of three adjacent, counter-rotating rolls, 
with the middle possessing the strongest flow, as expected. The middle roll extends to the 
sidewalls in the 8=90" plane, although the flow is much stronger toward the centre of the 
cylinder. The horizontal planform of this solution is better seen in Figure 17, which illustrates the 
vertical velocity field at z=O for the flow shown in Figure 16; the view in Figure 17 is from almost 
180" to the rear relative to that in Figure 16. In appearance, the temperature field at z = O  is almost 
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Figure 16. 3D perspective of flow at Ra=2000 for y=1.57485 with Pr=6.7 (lulm,,=O~790) 

Figure 17. Vertical velocity field at z = O  for Ra =2000 for y = 1.5748 with Pr = 6.7; the view is from the rear of the previous 
figure 

Figure 18. 3D perspective of flow at Ra=4000 for y=1.57485 with Pr=6.7 ( 1 ~ ( , , , ~ ~ = 4 . 6 9 )  

indistinguishable from the vertical velocity field, as expected. This branch becomes unstable with 
respect to a multimode disturbance at Ra = 2330, so that the resulting solution contains non-zero 
amplitude coefficients for all six of the linear stability eigenvectors used to expand the non-linear 
solution in the form of expansion (25), and is appropriately denoted by (le, lo, Oe, 00,2e, 20), 
which represents a stable mixed mode solution. This latter branch is stable, and it is represented 
by the uppermost curve in Figure 15. Initially, the flow solutions along this branch look very 
much like a (le, 00,20) solution. As Ra is increased, one of the side rolls grows at the expense of 
the other two rolls, (as seen in Figure 18) which shows the solution at Ra=4000 on this branch. 
Stork and Miiller14 observed a similar flow near the onset of convection in a flow visualization 
experiment using a silicon oil. In both the theoretical and experimental flow visualizations, the 
flow on one side of the cylinder forms a more or less closed, toroidal structure, while the flow on 
the other side curves nearly halfway around the cylinder. While the qualitative features of this 
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Figure 19. Bifurcation diagram for y =  1.57485 with Pr=0.02 

Figure 20. 3D perspective of flow at Ra=2100 for y=1-57485 with Pr=0.02 (lul,,,=21.2) 

flow seem physically reasonable, the quantitative aspects of this solution should be regarded as 
speculative because of the truncated nature of our solution representation. 

The bifurcation diagram for Pr = 0.02 and y = yo is shown in Figure 19. For the Pr = 0.02 case, 
the stable (le, lo, Oe, 00,2e, 20) branch bifurcates from the (le, 00,20) branch at Ra =2056. The 
(Oe, 00,2e, 20) branch bifurcates from the unstable axisymmetric (Oe, 00) branch at Ra = 2077, but 
is unstable itself until Ra=2090. At Ra=2090, an unstable (Oe, 00, le, lo, 2e, 20) branch bifur- 
cates from the (Oe, 00,2e, 20) branch. (All of the bifurcations analogous to those of the Pr = 6.7 
case occur at lower Rayleigh numbers for Pr = 002 than for Pr = 6.7.) Figure 20 shows a solution 
at Ra = 2100 on the (Oe, 00,2e, 20) branch. The recirculations in the 0 = 90" plane have tilted, 
driving a strong upflow in the centre of the cylinder. 

Near y =  1-8, the n = 1 even mode is clearly the critical mode, but only for a relatively small 
range of aspect ratio. For y > yo, the critical mode changes often as y is increased. This behaviour 
results from the sidewall influence (or lack thereof) on the flow structure (see Reference 3). 
Consequently, this is a region of particular interest for a weakly non-linear study in order to 
determine how these features, already apparent in the Iinear stability results, affect a finite 
amplitude solution near Ra". 

It is known from Part I that at y=2.06, the modal Rayleigh numbers Raol, Rall  and Razl for 
the n = 0, n = 1 and n = 2 modes, respectively, are all very close in magnitude, with n = 2 being the 
critical mode. The actual values are Razl = 1834, Rall = 1837 and Raol = 1839. Consequently, it 
is very difficult to forecast the finite amplitude behaviour at this aspect ratio from the linear 
stability results. Interestingly, the bifurcation diagrams for Pr = 6.7 and Pr =0.02, which are given 
in Figures 21 and 22, respectively, are both quite simple. In both cases, the (2e, 00) branch is stable 
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Figure 22. Bifurcation diagram for y = 2.06 with Pr =0.02 

initially, but goes unstable almost immediately with respect to a (Oe, 00,2e, 20) branch. For 
Pr = 6.7 this occurs at Ra = 1869, while at Pr = 0.02 it occurs at Ra = 1835. For the Pr = 0.02 case, 
the (Oe, 00,2e, 20) branch becomes unstable to oscillatory disturbances at Ra=2810. Figure 23 
displays a solution at Ra= 1850 for Pr=6-7 on the stable (2e, 00) branch, near the onset of 
convection. At this aspect ratio there are multiple rolls across the diameter in both the 8=0" and 
8=9W planes. The flow is very 3D, with the basic planform being up, down, up, down moving 
36W around the cylinder at a fixed radius. The flow essentially circulates around axes at z =O in 
the 8 = k 45" planes, with the 8 = 0" and 8 = 90" planes, which are shown in Figure 23, serving as 
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Figure 23. 3 D  perspective of flow at Ra = 1850 for y = 2.06 with P r  =6.7 (In lmax =0.324) 

e = O  
Figure 24. 3 D  perspective of flow at Ra =25OO for y = 2.06 with P r  = 6.7 (1u Jmar = 2.73) 

azimuthal dividing planes for the recirculations. The regions of strongest upflow and downflow 
are also located in the B=O" and 8=90° planes. (The reader is cautioned against attempting to 
envision 2D continuity constraints, since the flow is very 3D.) A flow solution for Pr=6-7 at 
Ra = 2500 on the (Oe, 00,2e, 20) branch is shown in Figure 24. This solution strongly resembles 
a flow pattern observed by Stork and MiillerI4 near the onset of convection in silicon oil in 
a cylinder with y = 2. In particular, both the experimental and theoretical flow visualizations show 
horizontal planforms with a somewhat elongated toroidal structure in the centre of the cylinder. 

Binary fluid mixtures 

A cylinder aspect ratio of y = y D  yields a numerical double eigenvalue of the linear stability 
problem for a monocomponent fluid. It is interesting to see how the convective behaviour is 
changed by the introduction of a small amount of Soret diffusion. First, it is appropriate to 
consider the modal stability threshold as a function of I) (for t: =0) at this aspect ratio, which is 
displayed in Figure 25. For I) < 1.5, the axisymmetric (n = 0) mode is seen to be the critical mode, 
while for larger I), the antisymmetric ( n =  1) mode is the critical mode. Neglecting the Dufour 
effect (i.e. for [=O), the physical parameters for a mixture of xenon and argon with a xenon mole 
fraction of Xx,=0.2 are I)=O.O6, Fr=0.71 and &= 1.1. (The $ value was obtained from 
Abernathey and Rosenberger.16 The Prandtl and Schmidt numbers were estimated from data 
available in To~loukian. '~)  At y = y D  for this I), the n = 0 mode is the critical mode, with the n = 1 
mode having the next lowest modal Rayleigh number. Specifically, &zOl = 1721, and gal  = 1760. 
The bifurcation diagram far this case is given in Figure 26 over the range 1700<R"a<2000. 
Initially, the axisymmetric (Oe, 00) branch is stable, as expected on the basis of the linear stability 
theory. A solution at R"a= 1800 on this branch is shown in Figure 27. For comparison, recall that 
for the monocomponent case, the critical Rayleigh number at y = y D  is = Ra = 1914, and the 
flow at onset is antisymmetric, despite the fact that Raol = Ral 1 .  From Figure 26, it can be seen 
that the axisymmetric branch becomes unstable at Ra = 1890, just beyond where it crosses the 
unstable (le, 00,20) branch, and still at a lower Rayleigh number than the critical value for the 
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onset of convection for the monocomponent case. It seems probable that the instability of this 
branch must be triggered by the bifurcation of a secondary branch from it, but no such branch 
was found. Interestingly, the disturbance that triggers this instability is antisymmetric in form, 
which foreshadows the behaviour of the antisymmetric branch. It is also worth noting that the 
(Oe, 00,2e, 20) branch does not bifurcate from the axisymmetric branch until R”a=2008, and is 
unstable to as high a Rayleigh number as the analysis is carried. In contrast, the (Oe, 00,2e, 20) 
branch eventually became stable for the monocomponent case. As in the monocomponent case, 
the (2e, 00) branch is unstable over the entire range of Rayleigh numbers considered. 

The (le, 00,20) branch is initially unstable, but becomes stable at R“a= 1940, not long after the 
(Oe, 00) branch becomes unstable to an antisymmetric disturbance. A solution at Ra = 2000 on 
this branch is shown in Figure 28, and appears to be quite comparable to the solution shown in 
Figure 16, at Ra = 2000 on the analogous branch for the monocomponent case for y = yo. Again, it 
seems likely that this change in stability of the (le, 00,20) branch signals the bifurcation of 
a secondary branch, but no such branch was found. (As pointed out by a reviewer, this implies 
that this point represents a non-simple bifurcation point15 or the inability of our numerical 
scheme to converge to the solution.) In addition, the (le, 00,20) branch is found to become 
unstable at Ra = 2570, but no secondary bifurcation was found there either. In both of these cases, 
it is apparent from the algebraic equations for the amplitude coefficients that if these secondary 
branches were to be described by expansion (25), they would probably be represented by 
solutions with non-zero coefficients for all six modes. The difficulty in finding these new branches 
points out  the major difficulty with this technique: once one solution has been found on 
a particular branch, the entire branch is then easily tracked by the use of a first-order continua- 
tion scheme, but there is no prescription for finding that first solution. This proved to be a general 
difficulty for the study of binary fluid systems, probably as a result of the increased complexity of 
the non-linear algebraic equations for the amplitude coefficients. A possible remedy for this 
problem is the use of a homotopy continuation method,18 but this capability has not been 
implemented for this study at the current time. 

Water-methanol systems can exhibit substantial Soret effects. For a water-methanol mixture 
with a water weight fraction of WHzo=0.715, the Soret coefficient is $ = 1.9, and the Prandtl and 
Schmidt numbers are l% =9-29 and f c  = 820.19 From Part I it is known that the n = 0 mode is the 
critical mode for this case with y =  1-8. At approximately $= 2.16 for y =  1.8, there ig a double 
eigenvalue of the linear stability problem, and for greater $ the n = 1 mode is the critical mode. At + = 1-9 for y = 1.8, R”aol = 390.1 and R”al, = 394.9, which is a rather small separation in Rayleigh 
number. The results that were found for y = y D  with $=O, which is a double eigenvalue of the 
linear stability problem, and for $ = 0.06 (i.e. the Xe-Ar mixture just discussed), a small deviation 
in $ from the double eigenvalue, showed that the branch structure was fairly complicated in the 
neighbourhood of the double eigenvalue. Based on analogy with that behaviour, one might 

e = O  

Figure 28. 3D perspective of flow at &2=2000 for y=1.5748 for X e A r  with x,.=0.2 (~,$=o.&j) ((u(,,,=8.22) 
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expect the bifurcation diagram for the methanol-water system with # = 1.9 to be rather complex. 
In addition, a consideration of the modal stability limits as a function of aspect ratio at # = 2.16, 
which are displayed in Figure 29, supports this expectation. Surprisingly, this is not the case: the 
bifurcation diagram is quite uneventful, showing the (Oe, 00) branch to be stable over the entire 
range of Rayleigh numbers considered, while the (le, 00,20) and (2e, 00) branches are always 
unstable over this range. In addition, the Nusselt numbers are observed to be extremely small, 
suggesting that the convective heat transport is weak. Figure 30 shows a flow solution at Ra = 500 
along the stable axisymmetric branch. The flow consists of a single toroidal roll and is quite weak, 
with a maximum dimensionless velocity of 1 u lmax = 0.0097, even though this Rayleigh number is 
nearly 30% greater than the critical value of Ra" = 390.1 for the onset of convection. This result 
supports the observation for the Xe-Ar mixture that the incipient flow resulting from the 
increased destabilization provided by the Soret effect is relatively weak. Moreover, the conclusion 
that the incipient flow caused by the enhanced destabilization resulting from the Soret effect is 
relatively weak is in agreement with experimental observations. Hurle and Jakemanlg conducted 
a careful series of experiments measuring the heat flux through shallow layers of water-methanol 
mixtures with comparable Soret coefficients to the system studied here. They were unable to 
detect the onset of convection until their systems had attained approximately the classical Benard 
stability limit of Ra= 1708 for a monocomponent fluid. Based on the results of the present 
analysis, this is not hard to understand, considering the extremely small Nusselt numbers for the 
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Y 

Figure 29. Critical Rayleigh number as a function of aspect ratio for 1 <y<4 with $=2.16 

e = O  

Figure 30. 3D perspectiveofflow at l?u=500for y= 1.8 for water-methanol with WH20=O~715($=1~9)(Ju~,,,=O~o0965) 
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t+b = 1.9 case. As pointed out by Hurle and Jakeman, the reason for this is that ' . . . convection can 
only be driven at a rate which is commensurate with the maintenance of a solute gradient by the 
Soret effect'. A more vigorous flow would tend to destroy the driving force for convection. The 
establishment of a concentration gradient in the system is essentially a secondary effect in this 
problem, resulting from the applied temperature gradient. Consequently, the concentration 
difference between the top and bottom of the cylinder is not fixed. A clear illustration of this is 
provided in Figure 3 1, which displays the horizontally averaged temperature and concentration 
fields corresponding to the flow solution shown in Figure 30. The fact that the temperature and 
concentration gradients have opposite signs results from the fact that the Soret effect causes 
water, which is the denser substance, to migrate to the cold, upper boundary. (Water is chosen as 
substance 'one' here.) The horizontally averaged temperature field is essentially unaffected by the 
flow, while the horizontally averaged concentration field is slightly distorted, and the concentra- 
tion difference between the top and bottom of the cylinder is diminished from that of the critical 
state for the onset of convection (which is represented by the corners of the figure). (Note that 
because of the Soret effect, the concentration gradient normal to the top and bottom of the 
cylinder must be non-zero in order to satisfy the boundary conditions of zero mass flux through 
the top and bottom.) The concentration variable plotted here results from a rescaling of the 
dimensionless variables of the problem in order to subtract the temperature field from the ?-field. 
The variable that is plotted is 

where T= 5"+ f i s  the dimensionless temperature, and z is the dimensionless vertical co-ordinate. 
This can be rewritten as 

where W l  =+( Wpy + W;J, and WtT and WpB are the mass fractions of substance 1 at the top and 
bottom of the cylinder, respectively, for the corresponding (unstable) conduction state at the same 
Rayleigh number. This variable then gives a measure of the distortion of the concentration field 
(in terms of mass fraction) relative to the linear field for the conduction state. From the figure it is 
clear that the horizontally averaged solute gradient is in fact appreciably weakened by the mild 
flow. 

What all of this points to is a fundamental difference between the monocomponent case and the 
binary case in the mechanisms that trigger the loss of stability of the conduction state. For the 
monocomponent case, flow occurs when enough potential energy has been stored in the density 
field so that it can be converted into kinetic energy faster than it can be dissipated by viscosity and 

WfB TB 

Figure 31. Horizontally averaged temperature and concentration fields for water-methanol with WH2,=0.71 5 ($ = 1.9) 
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the stabilizing influence of conduction. The additional contribution driving the instability in 
a binary mixture is the potential energy stored in the concentration field. In contrast to 
conduction, mass diffusion, which plays an important role in binary systems, typically acts on 
a much longer time scale (at least for liquids), as can be seen by comparing the Prandtl and 
Schmidt numbers for a given fluid. This means that a perturbation in concentration is typically 
dissipated much more slowly than a thermal perturbation. Consequently, even though the 
concentration field is essentially a secondary effect resulting from Soret diffusion driven by the 
applied temperature field for the current problem, concentration effects can substantially decrease 
the stability of a fluid mixture. As a result of the longer time scale for diffusion relative to 
conduction, the minimum potential energy gradient required to drive flow in the binary case is 
reduced relative to the monocomponent case, resulting in relatively lower velocities near the onset 
of convection in a binary fluid. Although this secondary mechanism in the binary case can be 
destabilizing in terms of diminishing the threshold for the onset of convection, it is fragile, and is 
easily destroyed by flow. For the weak flow shown in Figure 30, the difference in the horizontally 
averaged weight fraction from top to bottom in the cylinder is reduced to 82% of that for the 
corresponding conduction state. 

A matter that is very important to crystal growers is the formation of lateraI concentration 
gradients in an ampoule in which a crystal is being grown. While the velocity clearly goes to zero 
at the cylinder sidewall, as required, the downflow (upflow) near the wall lowers (raises) the 
temperature at the sidewall relative to the linear, conduction profile. The concentration field is 
similar to the temperature field, but is inverted. The reason for this is that water, which is 
substance 1 here, tends to concentrate in the colder fluid as a result of the Soret effect. For the flow 
shown in Figure 30, at z=O the maximum vertical velocity is uzma~=0~O097, the maximum 
temperature is TZax = 0.0023, and the maximum concentration is I W; Jmax = 0.38. Each of these 
maxima occurs at I =O. Although the deviation of the temperature field from the value of TR = 0 
at z=O for the conduction state is small, as a result of the slow flow speed, the deviation of the 
concentration field from the value of W," = 0 at z = 0 at the conduction state is sizeable. Hence, 
even though the overall concentration difference across the system would normally be small, the 
lateral inhomogeneity is large on that scale, being on the order of half the difference from top to 
bottom at the conduction state. Consequently, although the velocities are generally of small 
magnitude for flow in a binary system prior to achieving the critical Rayleigh number for 
a monocomponent fluid, they can, nonetheless, create relatively large lateral inhomogeneities in 
concentration. This is important, since it can be very damaging to the desired physical properties 
of the resulting crystal. 

To illustrate how strongly the lateral inhomogeneities persist over the height of the cylinder, 
compare the perturbations in the velocity, temperature, and concentration fields at z = 0.4 (i.e. 
near the top, which is at z=O5) for the flow shown in Figure 30. At this height, the maximum 
velocity (perturbation) is quite small, being about one-tenth the magnitude of the maximum at 
z = 0. Correspondingly, the temperature field is essentially flat, with a maximum value that is very 
nearly equal to the value at z=O.4 for the conduction state. Nonetheless, the deviation of the 
concentration field from the value of W," = 0.4 for the conduction state is again substantial, with 
a deep depression around r=O, the minimum of which has a value of W,"=0.014. Thus, the 
concentration variation at z=O4, near the end of the container, is nearly 80% of that at z=O. 
This behaviour, in addition to having important consequences for growing crystals, also suggests 
that the tendency of the fluid to resist equilibration in concentration relative to temperature when 
$ is larger causes the fluid to tend to retain its relative buoyancy longer in this case. Consequently, 
when $ is larger, the fluid must traverse a relatively longer path along the top or bottom of the 
container (in terms of horizontal distance relative to the depth of the fluid) before its density is 
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sufficiently altered to change the sign of its buoyancy leading to fewer, wider roll cells when II/ is 
larger. 

One last binary system is now considered: a mixture of liquid tin and lead with W,, = 0.64. This 
system is chosen because it is the one liquid-metal system for which a Soret coefficient was found 
that might be reliable; all other values that were found were measured in a regime in.which flow 
was likely, rendering the data questionable. The value of the Soret coefficient for this system was 
computed from data given by Winter and Drickamer” and is huge: I) = 2800. Recall from the 
definition of II/ with (=O,  

S 

where S is the Soret separation number. Thus, the reason that + is so large is that K / D  is very large 
for liquid metals; here, KID = 3600. (The physical properties used for this system, other than the 
Soret coefficient, were obtained from data given by Corriell et al.,’’ and are actually for small 
amounts of tin in lead. Although this does not correspond to the concentration at which the Soret 
coefficient data were available, it is hoped, nonetheless, that the resulting assemblage of physical 
properties will be representative of liquid-metal systems in at least a general sense.) The critical 
Rayleigh number for the onset of convection in this case is tiny: R”a“ =R“all =0.2906, with the 
antisymmetric (n = 1) mode being the critical mode. The next lowest modal Rayleigh numbers 
belong to the n = 0 and n = 2 modes, with kaol =0.3251 and ka2, =0.3363. The Nusselt numbers 
near the onset of convection are so small that the bifurcation diagram is not presented; the heat 
transfer across the system is insignificant. With convection being so slight, it seems unlikely that 
significant non-linear behaviour could be found near the onset of convection. Consequently, this 
opportunity is taken to  push the approximation well beyond its recommended limit of accuracy, 
to R”u = 3, which is about ten times the critical value. The (le, 00,20) branch is still found to be 
stable at this Rayleigh number. The corresponding flow field is shown in Figure 32. For this case, 
one essentially antisymmetric roll fills the cylinder, and no sign of substantial inertia is present. 
The maximum velocity magnitude is located at r = O  in the 8=0 plane, about one-fifth of the 
height from either the top or the bottom of the cylinder, and is essentially horizontal. The 
magnitude is I u lmax =0.32. The maximum vertical velocity is I u, I max =0.12, which is roughly 
one-third the global maximum velocity, and occurs at about r = 0 6 .  The temperature and 
concentration fields at the cylinder sidewall are offset from the zero value as a result of upflow or 
downflow near the wall, but in both cases the gradient at the sidewall is zero, as required. The 
maximum temperature deviation from the level of the linear, conduction field is only 2 x 
which is consistent with the small Rayleigh number. Although the absolute magnitude of the 
variation in concentration from top to bottom in the cylinder is undoubtedly small, the relative 
magnitude of the lateral deviation is substantial, showing a maximum deviation from peak to 

.................... , ................ 

Figure 32. 3D perspective offlow at & = 3  for y = 1 4  for lead-tin with W,=0.64 (+=0.2800) (luI,,,=O.322) 
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trough of about 76% of the total deviation from top to bottom for the corresponding conduction 
state. The maximum concentration deviation occurs relatively close to the wall, at I = 0.87. This 
supports the conclusion that although the velocities resulting from the destabilization provided 
by the Soret effect are small, the resulting concentration effects can be important. 

CONCLUSIONS 

The cost and effort of generating a solution of the form of expansion (7) increase rapidly as the 
number of terms is increased. From a practical point of view, this is what limits the scope of this 
technique to a small range in Rayleigh numbers near the critical value for the onset of convection. 
Nonetheless, in this range, this technique was found to be very cost-effective relative to the 
alternative of using local approximation techniques such as the finite element or finite difference 
methods. Once the integrals in equations (19) and (20) have been evaluated for a particular 
cylinder aspect ratio (y), and particular values of $ and 5, the Rayleigh, Prandtl and Schmidt 
numbers may be varied at very little cost. All that need be solved for each new set of values of 
(Ra, a, fc)  is a system of non-linear algebraic equations. In contrast, a new solution is required 
for each set of values of (Ru, a, fc, $, 5) if a local scheme is used. Although previous solutions 
may provide good initial guesses for a local scheme, the iterative approximate solution of the 
large number of nodal equations that would be required for a solution to a 3D problem such as 
this would be far more costly than the much smaller number of equations encountered here. 
Moreover, the Rayleigh number range for which a weakly non-linear approach is appropriate is 
precisely the range in which a local solution technique is least efficient, since the Jacobian matrix 
that occurs in solving the algebraic system of nodal equations arising in such an analysis would 
tend toward singularity as f iu  -ifiuc. Consequently, the two types of analyses appear to comp- 
lement each other. 

One of the goals of this analysis was to track solution branches as a function of the Rayleigh 
number. The weakly non-linear technique that was used herein is particularly convenient for this 
task since it only requires the solution of a small system of non-linear algebraic equations for each 
new value of R"a. Furthermore, this task was efficiently automated by the use of a first-order 
continuation scheme. Nonetheless, an initial solution must still be obtained on each solution 
branch that is to be tracked, and in some cases this proved to be a difficult, and tedious, 
undertaking. (Note that this is also a problem for local schemes.) This was particularly true for the 
solutions that were sought for binary fluid mixtures, probably as a result of the increased 
complexity of the governing equations. It is suggested that a homotopy continuation technique 
be used, which should, in theory, allow the determination of all of the solutions to the algebraic 
equations resulting from a particular truncation within a prescribed subspace of the function 
space spanned by the functions in the representation. 

The results for monocomponent systems indicate that non-linear effects are important for 
cylinder aspect ratios near one or greater. In general, non-linear behaviour was observed to 
become important for fluids with low Prandtl numbers at reduced Rayleigh numbers compared 
to fluids with higher Prandtl numbers. Nevertheless, the qualitative behaviour of systems with 
different Prandtl numbers was typically very similar in many respects. The primary exception to 
this was the tendency of low Prandtl number solutions to become unstable to oscillatory 
instabilities for y > 1, which was not observed for higher Prandtl number fluids over the accessible 
Rayleigh-number range. This finding agrees qualitatively with the experimental observations of 
Muller et aL7 

The weakly non-linear theory successfully predicted secondary branches whose existence is 
supported by experimental observations. However, the quantitative accuracy of the solutions 
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along these branches is not known, since it seems possible that a higher degree of non-linearity 
may be required to describe accurately the physics than was accounted for in this analysis. The 
linear stability theory suggests a complex correspondence between the spatial structure of the 
flow solutions and the cylinder aspect ratio. This correspondence was verified by the non-linear 
theory, although the non-linear results suggest that the 'patches' of aspect ratio over which higher 
modes (n 3 2) are the critical mode are primarily indicative of the likelihood of bifurcations to 
stable secondary branches at low Rayleigh numbers, rather than of a particular spatial structure 
of the finite-amplitude solutions. 

For binary fluid mixtures, it was found that a relatively small amount of Soret diffusion, as 
determined by a small value of S ,  could substantially change the branch structure near the onset 
of convection. This is particularly true if KID is large, reflecting a large separation between the 
conduction and diffusion time scales, resulting in a large value of I). The tendency toward fewer, 
larger aspect-ratio rolls (length-to-depth) when the Soret effect is active, which was discovered 
from linear stability theory, was found to persist at higher Rayleigh numbers. In agreement with 
experimental observations, incipient flow in binary systems, which occurs at a reduced Rayleigh 
number as a result of the Soret effect (when $>O), was found to be weak. Nonetheless, the 
resulting 3D disturbances to the concentration field were found to be significant. Furthermore, it 
was determined that these results could be explained in terms of the different mechanism leading 
to the early onset of convection in binary systems as compared to monocomponent systems. For 
binary systems heated from below, the destabilization provided by the Soret effect depends on the 
timescale for diffusion. When this timescale is long, perturbations in concentration dissipate 
slowly, which destabilizes the mixture. 
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APPENDIX I: NOMENCLATURE 

solution vector for equations (19) and (20) 
coefficients in the velocity-field representation 
coefficients in the temperature-field representation 
coefficients in the ?-field representation 
mass diffusivity 
coefficients in nonaxisymmetric velocity-field representation 
Soret coefficient 
Dufour coefficient 
cylindrical unit vectors 
right-hand-side matrix for equations (19) and (20) 
height of cylinder 
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p- 
Pr 
R 
Ra 
Ra 
Ran1 
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T 
TB 
TT 
AT 
T- 
t 
U 
U 
V 
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Wl 

W j k n l  

XX, 
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right-hand-side matrix of equations (19) and (20) 
azimuthal wave number (mode number) 
unit normal vector 
axisymmetric velocity basis function 
pressure 
modified Prandtl number (for a binary fluid) 
radius of cylinder 
Rayleigh number (for a monocomponent fluid) 
modified Rayleigh number (for a binary fluid) 
modal Rayleigh number from the linear stability problem 
radial co-ordinate 
Soret separation number 
Schmidt number 
temperature 
temperature of cylinder bottom 
temperature of cylinder top 

horizontally averaged temperature 
time 
velocity 
spatial dependence of u in the linear stability problem 
volume of cylinder 
non-axisymmetric velocity basis function 
mass fraction of substance 1 
volume-averaged weight fraction of substance i 
non-axisymmetric velocity basis function 
mole fraction of xenon 
vertical co-ordinate 

T B -  TT 

Greek symbols 
Y r dimensionless Dufour parameter 
r? transformed concentration variable 
11 horizontally averaged q 
0 
8 azimuthal co-ordinate 
A j k n l  q basis function 
t jtt 
CJ 

m j k n f  temperature basis function 
x + dimensionless Soret parameter 

cylinder aspect ratio ( E RIL) 

spatial dependence of T in linear stability problem 

complex amplification factor for the linearized horizontally averaged problem 
complex amplification factor for the original linear stability problem 

complex amplification factor for disturbances to non-linear steady states 

Superscripts 
C critical Rayleigh number 
D dimensional quantity 
R rescaled variable 
S steady-state solution 
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Subscripts 
1 property of component one 
2 property of component two 
B 
n corresponds to mode n 
T 

evaluated at the bottom of the cylinder 

evaluated at the top of the cylinder 

APPENDIX 11: COMMENTS AND CORRECTIONS FOR PART I 

There are some noteworthy corrections besides a few typos and some additional comments 
extending and clarifying some aspects of Part I. 

The Ra appearing in the ordinate of Figures 2-8 should be replaced by W = y4 Ra. The Ra that 
appear as the ordinate in Figures 9-12 and 15-22 should be replaced by Ra. In all cases (i.e. 
replacing Ra by W or Ra by Ra), all of the subscripts, superscripts or other additional notation 
should be retained, except that the tilde should be removed from the ordinate of Figures 2 and 3, 
yielding simply 92‘. 

It can be shown by manipulating equations (33)  and (34) that Figures 15-22 are also valid 
when the Dufour effect is included if Ran is replaced by RaJl +S)/F,. In a similar manner, the 
asymptotic limit $-m discussed on p. 109 can be generalized to include the Dufour effect. The 
more general statement is Ra,(l +S)/F,+f(y)/+ as $+m. 

If the results in Table I11 are recast in terms of Ra“(1 + S )  or Ra‘ instead of Ra‘ (i.e. in terms of 
a Rayleigh number that does not contain the Dufour parameter in its definition), the anomolous 
stabilization of the Dufour effect in some cases discussed on p. 100 can be shown to be an artifact 
of using Ra‘. In all cases the Dufour effect is destabilizing. 

Finally, the discussion of the limiting case S-+-1 (p. 85) is misleading and somewhat 
erroneous. If one focuses on Ra(1 + S ) $ / F ,  instead of Ra as was done in that discussion, one can 
correctly reason that the system is unstable. By utilizing this ‘re-scaling’, it shows that in this limit 
there is a change in the mechanism causing the instability. The previously reported result is one 
which would be expected if the mechanism were the usual unstable mean density gradient, but in 
this limiting case the mechanism is due to the disparity in time scales between heat and mass 
transfer which can lead to an instability even in the case of a stable mean density gradient. (See 
Reference 22 for additional discussion of these points.) 
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